1. REMOVE DAMAGED CONCRETE AS PER STANDARD REPAIR METHODS.
2. REPLACE/CLEAN ANY CORRODED REINFORCING STEEL.
3. ENSURE EXPOSED REINFORCING STEEL IS SECURELY FASTENED WITH TIE WIRE TO PROVIDE GOOD ELECTRICAL CONTINUITY.
4. ATTACH GALVASHIELD® XP4 ANODES TO CLEAN REINFORCING STEEL AT AN EVEN SPACING WITHIN PATCH AREA, OR AS OUTLINED IN PROJECT SPECIFICATIONS (MAX 750mm).
5. GALVASHIELD® XP4 ANODES ARE INSTALLED ALONG THE PERIMETER OF THE REPAIR AREA WHEN ALL CHLORIDE CONTAMINATED CONCRETE HAS BEEN REMOVED. IF ANY CHLORIDE CONTAMINATED CONCRETE REMAINS WITHIN THE REPAIR AREA AND IS IN CONTACT WITH ANY LAYER OF REINFORCING STEEL THEN IT MAY BE NECESSARY TO PLACE GALVASHIELD® XP4 ANODES IN A GRID PATTERN WITHIN THE INTERIOR OF THE REPAIR AREA.
6. TEST ELECTRICAL CONTINUITY OF THE REINFORCING STEEL BEFORE INSTALLATION AND REPAIR AS NECESSARY. TEST ELECTRICAL CONTINUITY OF ANODE CONNECTION TO REINFORCING STEEL AFTER INSTALLATION. A DC VOLTAGE MEASUREMENT OF ≤1mV CONFIRMS GOOD CONTINUITY.
7. POUR BACK REPAIR AREA WITH COMPATIBLE REPAIR MATERIAL AS PER PROJECT SPECIFICATIONS.
1. For repair materials with a high resistivity (greater than 15,000 Ohm-cm) a low-resistivity mortar pocket must be installed.

2. Install Galvashield® XP4 anode as normal.

3. Mortar pocket must be made using either Galvashield® Embedding Mortar or any repair material with resistivity less than 15,000 Ohm-cm.

4. Mortar pocket will completely fill the space between the anode and concrete over a minimum area of 100mm in diameter.
1: Place anode snugly against face of reinforcing steel with one (1) wire on either side of reinforcing steel.

2 & 3: Bend one wire completely around reinforcing steel.

4: Bend second wire completely around reinforcing steel.

5: Bend second wire completely around reinforcing steel in the opposite direction.

6: Twist wires together tightly to complete the connection. Take care not to break the wires.