1. **REMOVE DAMAGED CONCRETE AND CLEAN STEEL AS PER STANDARD KRI REPAIR METHODS.**

2. **ENSURE EXPOSED REINFORCING STEEL IS SECURELY FASTENED WITH TIE WIRE TO PROVIDE GOOD ELECTRICAL CONTINUITY.**

3. **ATTACH GALVASHIELD XP4 ANODES TO CLEAN STEEL AT AN EVEN SPACING WITHIN THE REPAIR AREA. PLACE THE ANODE AS CLOSE AS POSSIBLE TO THE INTERFACE BETWEEN THE REPAIR AND THE PARENT CONCRETE WITHIN 4 INCHES (100MM) WHILE STILL ALLOWING THE REPAIR MATERIAL TO ENCASE THE ANODE.**

4. **GALVASHIELD XP4 ANODES ARE TO BE INSTALLED PER THE DESIGN DRAWINGS AND SPECIFICATIONS ALONG THE PERIMETER OF THE REPAIR AREA.** AFTER ALL CHLORIDE CONTAMINATED CONCRETE HAS BEEN REMOVED. ADDITIONALLY, IF ANY CHLORIDE CONTAMINATED CONCRETE REMAINS WITHIN OR BELOW THE REPAIR AREA AND IS IN CONTACT WITH ANY LAYER OF REINFORCING STEEL THEN IT MAY BE NECESSARY TO PLACE GALVASHIELD XP4 ANODES IN A GRID PATTERN WITHIN THE INTERIOR OF THE REPAIR AREA.

5. **TEST ELECTRICAL CONTINUITY OF THE REINFORCING STEEL BEFORE INSTALLATION AND REPAIR AS NECESSARY.** TEST ELECTRICAL CONTINUITY OF ANODE CONNECTION TO REINFORCING STEEL AFTER INSTALLATION. A DC VOLTAGE MEASUREMENT OF ≤1mV CONFIRMS GOOD CONTINUITY.

6. **POUR BACK REPAIR AREA WITH COMPATIBLE REPAIR MATERIAL AS PER PROJECT SPECIFICATIONS.**

SECTION VIEW

GALVANIC ANODE INSTALLATION DETAIL

SCALE N.T.S.

GENERAL NOTES

- **SCALE** N.T.S.
- **SECTION VIEW**
- **GALVANIC ANODE INSTALLATION DETAIL**
- **GALVASHIELD® XP4 ANODES**
- **GALVASHIELD® ANODES**
- **CORROSION PROTECTION**
- **VECTOR CORROSION TECHNOLOGIES**
- **800 WINCHESTER ROAD, SUITE 175, LEXINGTON, KY 40505**
- **PH: 813-830-7566**
- **VECTOR-CORROSION.COM**

DRAWING REVISIONS

<table>
<thead>
<tr>
<th>DRAWING NO.</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F REQUIRED, LOW-RESISTIVITY MORTAR POCKET (GALVASHIELD® EMBEDDING MORTAR OR EQUIV.) TO EXTEND FROM ANODE A MIN. RADIUS OF 2" [50 MM].

REQUIRED WHERE CONCRETE REPAIR MATERIAL HAS A HIGHER SATURATED BULK RESISTIVITY THAN 50,000 OHM-CM.
INSTALLATION STEP #1
FEED ONE WIRE OVER REBAR
CLEAN REINFORCING STEEL (REBAR)
PLACE ANODE PARALLEL TO AND SNUG AGAINST THE REBAR.

INSTALLATION STEP #2
FEED ONE WIRE UNDER REBAR
CLEAN REINFORCING STEEL (REBAR)
PULL WIRE TIGHTLY UNDER REBAR WRAPPING ONE FULL REVOLUTION OUTWARD FROM ANODE AND THEN TO BACK OF REBAR AS SHOWN.

INSTALLATION STEP #3
CLEAN REINFORCING STEEL (REBAR)
TWIST THE WIRES TOGETHER AND THEN TWIST TIGHTEN WITH A WIRE HOOK UNTIL ALL WIRE IS TIGHT TO THE REBAR. THEN CONFIRM WIRES ARE CONTINUOUS TO REBAR USING A MULTIMETER.

INSTALLATION STEP #4
CLEAN REINFORCING STEEL (REBAR)
PEND TWISTED WIRES AGAINST THE REBAR.

ANODE ORIENTATION NOTE: ANODES MAY BE INSTALLED AS SHOWN WITH THE WIDER SIDE ON THE BOTTOM, OR MAY BE ROTATED 180-DEGREES TO HAVE THE WIDER SIDE AT THE TOP.
1. ALTERNATE INSTALLATION AT REBAR INTERSECTION

- Feed wires over & under bars as shown. Twist wires tight and test continuity per steps on CP 1.1.

- Clean reinforcing steel (rebar)

- **GALVASHIELD® XP4 ANODE (130MM X 40MM X 35MM)**

- Wire hook tool

- Clean reinforcing steel (rebar)

- **GALVASHIELD® XP4 ANODE (130MM X 40MM X 35MM)**

- Anode wires twisted tight to rebar w/ a wire hook tool and then bent down to rebar per sheet CP 1.1

- Anode wire wrapped over rebar

- Anode wire wrapped under rebar (at opp end of anode)

2. SECTION AT ANODE

- Anode orientation note: Anodes may be installed as shown with the wider side on top, or may be rotated 180-degrees to have the wider side at the bottom.